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What Problem are We Trying to Solve?

1.  Public Goods Problem for Open Data 

Due to free riding and financial challenges. 

2.  Externality/Spillover Problem for Evidence 

Due to inevitable validity and privacy leakage. 

3.  Transaction Costs Problem for Researchers 

Due to lack of trusted intermediary platforms.



Data & the “Public Goods” Problem

• Open data is a “public good,” technically speaking. 

• I.e., a commodity that’s non-rival & non-excludable. 

• E.g., lighthouses, parks, discoveries, defense, etc. 

• Problem is to finance and sustain public goods. 

• Solutions to free riding are taxes or philanthropy. 

• Works for look-up data: SDSS, Wikipedia, GPS, etc.



Evidence & the “Externality” Problem

• Data is not a “public good” (excludable). 

• Evidence for policy isn’t either (actually rival).  
Need models, hypotheses, and causal inference.  

• “Externality” or “spillover” is when you affect others 
without their choice, e.g., air or water pollution.  

• Every query answered leaks privacy and validity!  

• Solution: regulate bad behavior, facilitate good.  



Accuracy & the Externality Problem 

• Validity of testing a hypothesis against a null H?  
Reject null if p= prob of data D given H is < .05.  

• Say another project tests D against another null H’.  
But should publish only if prob of D given H or H’<.05. 

• Or try 100 tests. Noise should make 5 look significant.  
If put other 95 away, literature will differ from evidence. 
Called p-hacking, hypothesis fishing, or data mining.   

• Solutions:  Limit access. Or pre-register hypotheses. 
Or use some data to explore, set-asides for testing.   
Or control validity-leakage rate using DP methods…



Facts about Privacy [from DR14] 

• Database Reconstruction Theorem:  Too many 
statistics answered too accurately from a confidential 
database will expose the entire database for sure.   

• Data cannot be fully anonymized & remain useful. 

• Re-identifying anonymized data is not the only risk. 

• Queries over large sets are not protective. 

• Query auditing is problematic & provably impractical. 

• Neither summary statistics nor ordinary facts are safe. 



Privacy Solutions [DMNS 06]

• Idea: allow researchers to ask certain questions about 
a dataset D to a mechanism M that adds noise to the 
true answer, then gives an approximate answer M(D).   

• Definitions:  Let 𝛆>0 and let U be a database I cannot 
see.  It has a row for each individual’s information.  
Call a pair of datasets D and D’ neighbors if they differ 
in at most one row.  Before learning M(U), I have prior 
beliefs about the odds that U=D vs. U=D’.  We say M 
satisfies 𝛆-differential privacy if learning M(U) cannot 
change those odds by more than a factor of exp(𝛆).



Differential Privacy Properties 

• Note: Because exp(𝛆)~1+𝛆 for small 𝛆, this means 
M(U) tells you almost nothing new about U=D vs D’. 

• DP Theorem: There exist useful M that satisfy 𝛆-DP.  
E.g., given a standard statistical question about U, 
compute the answer then add noise of “size” 𝛆. 

• Participation: Anything learned from M(U) or after is 
essentially the same whether or not your info is in U.   

• Composition: Doing M1 then M2 is (𝛆1+𝛆2)-DP.



Privacy & the Externality Problem 

• Only shows how to regulate the leakage of privacy.  
Still can’t answer too many questions, or researchers 
could average out the noise.  Need a privacy budget.    

• Small 𝛆 means more privacy.  But requires more noise.  
So can ask more questions, but get less accuracy.  

• Synthetic Dataset Theorem:  Given D, you can run an 
M that approximately answers certain statistical 
questions in such a way that researchers can hardly 
ever tell M(D) from M(D’), even after many queries.  



Produce Evidence but Limit Externalities?  

• Let data scientists explore away at synthetic data. 

• Given a hypothesis so generated, access data to test 
it using DP to control privacy and validity leaks.    

• Yes, Differentially Private methods also control 
overfitting and false positive rates by ignoring D vs D’.  

• Thus distinguish between exploratory work on data vs. 
confirmatory research that can produce evidence.  

• Who will help facilitate all this for researchers? 



High Transaction Costs for Researchers  

• Gov’t can try to reduce such costs: currency, FOIA.  

• Administrative data use is now ad hoc:  Hard to 
obtain, prepare, protect, supply, sustain, study, link.   

• Need trusted intermediaries with sector expertise.  
Call these Administrative Data Research Facilities. 

• For gov’t or proprietary data, e.g., IRIS, Kilts, AISP, 
CDRC.  ADRF’s may also help with federal statistics.     

• Make a network, call it the ADRN, to share standards 
and best practices for producing reliable evidence. 
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